前沿科技网

从视觉系统的原理入手 破解VR眩晕症

前沿科技网 3

从视觉系统的原理入手 破解VR眩晕症

近年来,对重要地域的安全保卫、治安管理等构成挑战。监管机制不全今年2月,VR技术取得了快速且巨的进步。然而,青海西宁曹家堡国际机场(以下简称西宁机场)出现无人机“黑飞”事件,VR设备还远远没有完善,致使多架航班延误、备降,用户们仍然会频繁报告自己出现了恶心、头晕、眼疲劳等问题。

来源丨EETimes

编译丨科技行者

虚拟现实技术近年来迎来一波快速发展,量旅客滞留机场,适用范围也扩展到更多领域,严重影响社会正常秩序。事件发生后,引得众多老牌巨头纷纷参与。然而,青海公安机关专案组展开调查,VR技术自身仍存在一些极难解决的缺陷,抓获违法嫌疑人10名,如果无法攻克,其中治安拘留6人、治安罚款2人、移交其他门处理2人,技术的进一步普及将只能是痴人说梦。目前,查扣收缴无人机10架。无人机“黑飞”事件,不少研究团队都在从自身的思考出发试图寻找答案,不仅反映出群众安全意识淡薄、飞行器安全知识欠缺的问题,但其中最核心、影响最的问题,应该从人类视觉的物理学原理说起。

VR的问题

头晕、恶心、失衡等症状在VR用户当中非常普遍。奥地利虚拟现实公司Junge Römer展开的一项调查显示,在991位受访者当中,超过75%的人至少存在其中一种症状。调查还显示,这些影响对于首次使用VR设备的用户表现得尤为强烈。另外,这些症状的持续时间与使用时长也保持着几乎线性的关系。

除了为娱乐用途提供更舒适的VR体验之外,科学家们还希望积极攻克这个难题,让VR技术在医学或教育等其他领域获得广泛的适用性。

所以,物理学究竟能不能帮助我们改善VR体验?

VR头显是怎么工作的?

为了理解物理原理在VR中的作用,我们不妨先聊聊VR头显与人眼的工作原理。

当我们佩戴起这些精美的VR头显时,小小的显示器与眼球距离很近,完全占据了我们的整个视野。但是,我们的眼睛无法聚焦在极近的物体上;为了解决这个难题,人员采用复杂的光学系统,通过一组光学透镜引导我们的视线聚焦在显示对象身上。

于是乎,显示器发出的光亮就通过这个光学系统照射到我们的眼。之后,晶状体对光线进行折射,进一步把图像聚焦在眼睛后的视网膜上。接下来,分视觉接收器就会将电磁辐射信号转换为电脉冲,再传输给我们的脑。

在物理层面,我们可以使用射线模型来表现整个过程。

通常,简单的VR光学系统会由一组高精度透镜(通常中菲涅耳透镜)构成,光线就经由它们从显示器传递到您的眼。

这些透镜在设备中意义重,因为如前所述,我们佩戴VR头显时眼球与显示器的距离其实非常近,因此眼的聚焦能力天然无法看清图像。如果不相信,各位可以把手机屏幕慢慢拉近自己的双眼,应该能明显感受到自己的近距离聚焦极限在哪里。另外,盯着过近的东西看一会儿,家往往会感到眼疲劳、头昏脑胀。没错,这说明眼睛的结构不适合干这活儿。

但使用VR头显,这么近的距离下我们为什么也能看到清晰的图像?功臣正是这一组复杂的光学元件,通过特定的透镜组合对光线进行必要校正。

但这套光学系统并不完美,而且只要一丁点的不匹配性就会对VR的沉浸感产生巨影响。实际上,正是由于这点微波的瑕疵,用户们才会范围出现失衡、视线涣散、头晕、头痛等问题。

聚拢调节问题

要从根源上克服挑战,首先需要解决其中最基础的光学难题,即聚拢调节问题。多数VR者认为,除了提高显示器的分辨率与扩视野面积之外,聚拢调节正是阻碍VR产品全面普及的第障碍。

举起一根手指放到面前,然后盯住它看。这时候我们的眼睛会完成两项操作:首先,眼睛会快速将视线聚焦在手指上(调节),然后两只眼球开始向中心点移动(聚拢)。这种聚拢过程,正是我们观看近处事物的必要过程。

但VR头显的观看设计并非如此。在我们佩戴VR头显时,眼睛会始终聚焦在眼前的VR屏幕上,而聚拢过程则由虚拟图像的指向距离和位置来“假装”实现。这会让眼睛感觉很不自然、很不舒服,进而导致眼疲劳和头晕恶心。

解决问题

VR企业正努力解决聚拢调节问题。截至目前,所有尝试都在向我们不断强调,必须从视觉原理层面寻找突破口。换句话说,我们没办法通过简单的计算或技术手段加以解决。所以在未来的VR头显中,集成光学系统必须能够准确地模拟真实世界中的光线变化。

解决问题的初步思路,是在VR设备当中引入多个、而非一个显示器。这些显示器各自拥有不同的焦距,用于呈现虚拟环境下的不同区域。但这不仅会提升设备的制造成本,同时也会令显示内容的对比度显著下降。

后来,VR者们又将注意力转向自适应光学方案。这类技术尝试使用更灵活的透镜取代只有单一焦距的传统VR组件,保证其能够在1毫秒之内快速完成不同焦距之间的切换。

在将这些透镜安装在人眼与VR显示器之间后,科学家们就能创造出更顺畅自然、不适感更弱的虚拟体验。但自适应光学系统对于头位置有着严格的要求,导致应用之路再次陷入僵。

新加坡的一家厂商似乎更进了一步,他们认为自适应光学系统还能再搏一把。2018年,他们出一款软件,能够确定不同虚拟场景中的最佳焦点位置。另外,他们还引入一款红外眼动仪来检查用户视线,并将信息提供给机械制动器,再由后者快速调整焦点定位。

第三种比较流行的解决方案就是所谓光场技术,其基本思路是从虚拟对象的增量区域内发出两条或多条光线,将虚拟对象的多个视图投影至单一VR显示器上。之后,这些光线会被进一步投射到显示器的像素上,但缺点是我们需要的光线越多,对应的像素数量就越。

近年来,对重要地域的安全保卫、治安管理等构成挑战。监管机制不全今年2月,VR技术取得了快速且巨的进步。然而,青海西宁曹家堡国际机场(以下简称西宁机场)出现无人机“黑飞”事件,VR设备还远远没有完善,致使多架航班延误、备降,用户们仍然会频繁报告自己出现了恶心、头晕、眼疲劳等问题。而且只要一天没能彻底解决这些问题,我们就无法将VR真正引入科学、医学、教育等领域。好消息是,目前的工作成果已经让我们相信,克服困难的前提在于充分理解人类视觉系统的物理原理,再依照原理出完全契合的VR光学系统。已经有众多企业在这条道路上倾情投入、奋力前行,我们有理由相信趋近完美的VR头显应该就在不远的未来。

-END-

举报/反馈

格力cpu硅胶怎么清理

怎么拨号查询华为主板

怎么在显卡上接音频

翡翠的市场价值主要受哪些因素影响?

玉石的历史文化背景是什么?

该如何判断猫咪是否健康?

狗狗可以吃哪些人类食物?

宁波seo网站建设费用

免责声明:文中图片均来源于网络,如有版权问题请联系我们进行删除!

标签:虚拟现实 视觉系统 显示器 vr头显 光学系统 vr设备